www.anorg.chem.uu.nl/people/staff/FrankdeGroot/

- Frank de Groot
- PhD: solid state chemistry
- Post-doc:
- Post-doc: solid state physics

U Nijmegen (91) LURE, Orsay (93-94) U Groningen (95-98)

**U Utrecht since 1999** 

#### Synchrotron and theoretical spectroscopy of catalytic nanomaterials (inorganic chemistry and catalysis)

www.anorg.chem.uu.nl/people/staff/FrankdeGroot/

# Core Level Spectroscopy of Solids

# Frank de Groot Akio Kotani

CRC Press

## Interaction of x-rays with matter

- XAFS studies photoelectric absorption
- Elastic scattering (Thompson)
- Inelastic scattering
- (Compton)



#### XAS of an atom



a)

#### Core Level Spectroscopy of Solids



FIGURE 1.1 Energies of the core levels and VES of Mn and O in MnO.

#### TABLE 2.1 Nomenclature for Core Level Spectra

| Orbital*          | Label <sup>+</sup> | E <sup>‡</sup> (Ni) | E <sup>‡</sup> (O) |
|-------------------|--------------------|---------------------|--------------------|
| 1s                | K                  | 8333                | 543                |
| 2s                | L <sub>1</sub>     | 1008                | 42                 |
| 2p <sub>1/2</sub> | L <sub>2</sub>     | 870                 | V§                 |
| 2p <sub>3/2</sub> | L <sub>3</sub>     | 853                 | Vš                 |
| 3s                | $M_1$              | 111                 |                    |
| 3p <sub>1/2</sub> | M <sub>2</sub>     | 68                  |                    |
| 3p <sub>3/2</sub> | M <sub>3</sub>     | 66                  |                    |
| 3d <sub>3/2</sub> | $M_4$              | v                   |                    |
| 3d <sub>5/2</sub> | M <sub>5</sub>     | v                   |                    |

\* Orbital notation.

\* Spectroscopic names (Barkla notation).

\* Binding energies.

<sup>§</sup> Valence state with a binding energy of a few eV. Source: X-ray Data Booklet (2001) (LBNL, Berkeley).





FIGURE 1.3 Excitation of a photoelectron by an x-ray photon creates a core hole that is screened by the surroundings.

## XAS and XPS

# Excitation of core electrons to empty states.

# Spectrum given by the Fermi Golden Rule

$$I_{XAS} \sim \Sigma_f \left| \left\langle \Phi_f | T_1 | \Phi_i \right\rangle \right|^2 \delta_{E_f - E_i - \hbar \omega}$$

## **XAS** and **XPS**



XAS and XPS



Excitations of core electrons to empty states

The XAS spectrum is given by the Fermi Golden Rule



$$I_{X\!A\!S} \sim \Sigma_f \left| \left\langle \Phi_f \left| \hat{e} \cdot r \right| \Phi_i \right\rangle \right|^2 \delta_{E_f - E_i - \hbar \omega}$$

Excitations of core electrons to empty states

The XAS spectrum is given by the Fermi Golden Rule



 $I_{XAS} \sim M^2 \rho \approx \rho_{site,symmetry}$ 





Phys. Rev. B.40, 5715 (1989)



Phys. Rev. B.40, 5715 (1989); 48, 2074 (1993)

#### **Density of States of TiO**,



Phys. Rev. B. 40, 5715 (1989); 48, 2074 (1993)

#### **Density of States of TiO<sub>2</sub>**



Phys. Rev. B. 40, 5715 (1989); 48, 2074 (1993)

# **XAS: core hole effect**



Final State Rule:

Spectral shape of XAS looks like final state DOS

# Initial State Rule:

Intensity of XAS is given by the initial state

> Phys. Rev. B. 41, 11899 (1991)

Excitation of core electrons to empty states.

Spectrum identifies with the empty Density of States

Works well for K edges (1s)

Calculate with DFT (LDA+U, DMFT, BSE)

# Metal 1s XAS



# Metal 1s XAS



Juhin et al., Phys. Rev. B. 78, 195103 (2008)











Excitation of core electrons to empty states.

Spectrum identifies with the empty Density of States

Works well for K edges Metal K edges: quadrupole 1s3d transitions

Fermi Golden Rule:  $I_{XAS} = |\langle \Phi_f | dipole | \Phi_i \rangle|^2 \delta_{[\Delta E=0]}$ 

Single electron (excitation) approximation:  $I_{XAS} = |\langle \Phi_{empty} | dipole | | \Phi_{core} \rangle|^2 \rho$ 

# Quiz: Calculate the 2p XAS spectrum of Fe atom



#### XAS of an iron atom

Fermi Golden Rule:  $I_{XAS} = |\langle \Phi_f | dipole | \Phi_i \rangle|^2 \delta_{[\Delta E=0]}$ 

 $\Phi_{\rm i} = 1 \, {\rm s}^2 \, 2 \, {\rm s}^2 \, 2 \, {\rm p}^6 \, 3 \, {\rm s}^2 \, 3 \, {\rm p}^6 \, 4 \, {\rm s}^2 \, 3 \, d^6 \\ \Phi_{\rm f} = 1 \, {\rm s}^2 \, 2 \, {\rm s}^2 \, 2 \, {\rm p}^5 \, 3 \, {\rm s}^2 \, 3 \, {\rm p}^6 \, 4 \, {\rm s}^2 \, 3 \, d^7$ 

 $\Phi_{i} = 2p^{6} 3d^{6}$  $\Phi_{f} = 2p^{5} 3d^{7}$ 



#### XAS of an iron atom

Fermi Golden Rule:  $I_{XAS} = |\langle \Phi_f | dipole | \Phi_i \rangle|^2 \delta_{[\Delta E=0]}$ 

$$\Phi_{i} = 2p^{6} 3d^{6}$$
  
 $\Phi_{f} = 2p^{5} 3d^{7}$ 

Single electron (excitation) approximation:  $I_{XAS} = |\langle \Phi_{empty} | dipole | \Phi_{core} \rangle|^2 \rho$ 

$$\Phi_{core} = 2p$$
  
 $\Phi_{empty} = 3d$ 

**Neglect 2p-3d interactions (in the final state)** 

#### XAS of an iron atom



# XAS of atoms and solids

Direct 2p3d Coulomb interaction (= core hole potential) is screened in molecules and solids.

<2p3d|1/r|2p3d>

 $2p_{1/2}$ 

3d

Higher order terms (Coulomb and exchange) are **NOT** screened in molecules and solids

#### XAS of atoms and solids



## **XAS of molecules and solids**


## XAS of molecules and solids

2p<sup>5</sup>3d

20<sup>6</sup>3d

# No Unified Interpretation!

#### Single Particle:

**1s edges** (WIEN, FEFF, ORCA, PWSCF, etc.)

<u>Multiplets:</u> 2p, 3s, 3p edges (TT-MULTIPLETS)

#### Charge transfer multiplet program

# Used for the analysis of XAS, EELS, Photoemission, Auger, XES,

# ATOMIC PHYSICS $\downarrow$ GROUP THEORY $\downarrow$ MODEL HAMILTONIANS

## CTM4XAS program



© Eli Stavitski and Frank de Groot, 2008-2010 Synchrotron and Theoretical Spectroscopy, Utrecht University/ National Synchrotron Light Source



## CTM4XAS program

| - Configura                                               | tion and s                                                   | pectroscopy —                                      | port Help                                  |                                                  |                                                                      |                                                          |                                                               |                                           |
|-----------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|--------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------|
| Elect<br>configui<br>Initial<br>Final<br>Initial<br>Final | tronic<br>ration<br>state 2P(<br>state 2P(<br>state<br>state | Ni2+<br>06 3D08<br>05 3D09                         | XAS XF<br>2p<br>3p<br>4p<br>3d<br>5d<br>1s | PS XES<br>2p () 1s<br>3p () 1s<br>1s<br>2s<br>3s | RIXS<br>2p () 2p30<br>3p () 3p30<br>() 1s2p<br>() 1s3p               | id<br>id<br>ip<br>sp<br>Spectrum                         | XAS                                                           | •<br>•                                    |
| Slater integ                                              | gral 10                                                      | 10 1                                               | 0 SO c                                     | oupling                                          | 0 10                                                                 | broadenin                                                | ng 0.2                                                        | 0.4                                       |
| reduction                                                 | (%)                                                          |                                                    | we do not                                  | · // A/ A                                        |                                                                      |                                                          |                                                               |                                           |
|                                                           | Fdd                                                          | l Fpd G                                            | pd reduct                                  | ion (%)                                          | ore Valen                                                            |                                                          | Spl                                                           | it 800                                    |
| - Crystal fi                                              | Fdd<br>eld parame                                            | l Fpd G<br>sters(eV)———                            | pd Charge tra                              | ansfer para                                      | ore Valen<br>meters (eV)                                             | ice<br>Gaussia<br>)— broadenir                           | n 0.2                                                         | it 800                                    |
| - Crystal fie<br>Symmetry                                 | Fdd<br>eld parame<br>/ Oh                                    | H Fpd G<br>eters (eV)<br>┏                         | Charge tra                                 | ansferpara                                       | ore Valen<br>meters (eV)<br>.0 T(eg)                                 | ) Gaussia<br>) broadenir<br>)) Tempera                   | n 0.2<br>ng K                                                 | it 800                                    |
| - Crystal fie<br>Symmetry                                 | Fdd<br>eld parame<br>/ Oh<br>Initial state                   | H Fpd G<br>eters (e∨)<br>▼<br>Final state          | Charge tra                                 | ansfer para                                      | ore Valen<br>meters (eV)<br>.0 T(egi                                 | () Gaussia<br>broadenin<br>() Tempera                    | n 0.2<br>ng 0.2<br>ature, K                                   | it 800                                    |
| Crystal fie<br>Symmetry<br>10 Dq                          | Fdd<br>eld parame<br>/ Oh<br>Initial state<br>0.0            | H Fpd G<br>eters (eV)<br>▼<br>Final state ■<br>0.0 | Charge tra                                 | ansfer para                                      | ore Valen<br>meters (eV)<br>.0 T(egi                                 | ()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>() | n 0.2<br>ng 0.2<br>ature, K<br>range (eV)                     | it 800<br>]<br>0<br>0 - 100               |
| - Crystal fie<br>Symmetry<br>10 Dq<br>Dt                  | Fdd<br>eld parame<br>/ Oh<br>Initial state<br>0.0            | Fpd G<br>eters (eV)                                | Charge tra                                 | ansfer para                                      | ore Valen<br>meters (eV)<br>.0 T(eg)<br>.0 T(eg)<br>.0 T(t2 <u>0</u> | ()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>() | n 0.2<br>ature, K<br>range (eV)                               | it 800<br>0<br>0 - 100<br>V Stack         |
| - Crystal fie<br>Symmetry<br>10 Dq<br>Dt<br>Ds            | Fdd<br>eld parame<br>/ Oh<br>Initial state<br>0.0            | Fpd G<br>eters (eV)                                | Charge tra                                 | ansfer para                                      | ore Valen<br>meters (eV)<br>.0 T(eg)<br>.0 T(t2g<br>.0 T(t2g         | ()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>() | In 0.2<br>ng 0.2<br>ature, K<br>range (e∨)<br>ss sticks<br>ze | it 800<br>0<br>0 - 100<br>V Stack<br>Plot |

## **Atomic Multiplet Theory**

#### $H\Psi = E\Psi$



Kinetic Energy

Nuclear Energy

Spin-orbit coupling

Electron-electron interaction



## **Atomic Multiplet Theory**

 $H = \sum_{i} \frac{p_{i}^{2}}{2m} + \sum_{i} \frac{-Ze^{2}}{r_{i}} + \sum_{i} \frac{e^{2}}{r_{ij}} + \sum_{i} \zeta(r_{i}) l_{i} \cdot s_{i}$ 

pairs

N

Electron-electron interaction

Kinetic Energy

Nuclear Energy

Spin-orbit coupling

#### $H\Psi = E\Psi$



## **Atomic Multiplet Theory (ground state)**

$$\left\langle {}^{2S+1}L_J \mid \frac{e^2}{r_{12}} \mid {}^{2S+1}L_J \right\rangle = \sum_k f_k F^k$$

Electron Correlation of Valence States [5 eV]

$$H_{ATOM} = \sum_{pairs} \frac{e^2}{r_{ij}} + \sum_{N} \zeta(r_i) l_i \cdot s_i$$

Valence Spin-orbit coupling [0.1 eV]

## **Atomic Multiplet Theory (core hole)**

$$\left\langle {^{2S+1}L_J \left| {\frac{{{e^2}}}{{{r_{12}}}}} \right|^{2S+1}L_J } 
ight
angle = \sum_k {f_k F^k + \sum_k {g_k G^k }}$$

Core Valence Overlap [5 eV]

$$H_{ATOM} = \sum_{pairs} \frac{e^2}{r_{ij}} + \sum_{N} \zeta(r_i) l_i \cdot s_i$$

Core Spin-orbit coupling [15 eV]

- Ground state is 3d<sup>0</sup>
- Dipole transition  $3d^0 \rightarrow 2p^5 3d^1$
- Dipole selection rules:

$$\Delta S=1$$
 and  $\Delta L=\pm 1$ 

- Core hole spin-orbit coupling large
- L and S are no good quantum numbers

$$\Delta J=\pm 1 \text{ or } 0$$

## **Term symbols**

Term Symbol

<sup>2S+1</sup>L<sub>J</sub>

- L=0,1,2,3,4 > S, P, D, F, G
- LS quantum numbers not useful for XAS due to large spin-orbit coupling of the core hole.
- Use only J quantum numbers
- Degeneracy of each J-state: 2J+1

## **Term symbols**

#### **Term symbols of a 1s electron**

• S=1/2, L=0

$$J=1/2 \rightarrow {}^{2}S_{1/2}$$

#### **Term symbols of a 3d electron**

• S=1/2, L=2

J=3/2 or J=5/2  $\rightarrow$  <sup>2</sup>D<sub>3/2</sub> or <sup>2</sup>D<sub>5/2</sub>

## **Term symbols**

- **2p3d-configuration** (6x10 = 60 states)
- all combinations are possible: In short:  ${}^{2}P \otimes {}^{2}D = {}^{1,3}P,D,F$
- Add J-quantum numbers:
- <sup>1</sup>P<sub>1</sub>, <sup>1</sup>D<sub>2</sub>, <sup>1</sup>F<sub>3</sub>
- + <sup>3</sup>P<sub>0</sub>, <sup>3</sup>P<sub>1</sub>, <sup>3</sup>P<sub>2</sub>
- + <sup>3</sup>D<sub>1</sub>, <sup>3</sup>D<sub>2</sub>, <sup>3</sup>D<sub>3</sub>,
- + <sup>3</sup>F<sub>2</sub>, <sup>3</sup>F<sub>3</sub>, <sup>3</sup>F<sub>4</sub>,

- $\succ$  Ground state is 3d<sup>0</sup>: symmetry: <sup>1</sup>S<sub>0</sub>
- > Dipole transition  $3d^0 \rightarrow 2p^5 3d^1$
- > Selection rule:  $\Delta J=\pm 1$  or 0 (and  $J=J'\neq 0$ )
- ▶ J'=1

Term symbols of a 2p<sup>5</sup>3d<sup>1</sup> configuration

Ground state:  $3d^{0}$ : L=S=J=0  ${}^{1}S_{0}$ Selection rule: Final state must have J'=1



#### Ground state is 3d<sup>0</sup>

## 2p XAS of ScF<sub>3</sub>: crystal fields









## 2p XAS of ScF<sub>3</sub>



## **Calculations with CTM4XAS**

| Configuration                                                                                    | and spectroscopy-                                                  |                                                                                      |                                                                 |                                                                  | Plotting                                                                                      |                                        |                                           |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------|
| Electronic<br>configuration<br>Initial state<br>Final state<br>Initial state<br>Final state      | Ni2+ 2P06 3D08<br>2P05 3D09                                        | XAS XPS<br>2p 2p<br>3p 2p<br>4p 1s<br>3d 2s<br>4d 3s<br>5d<br>1s                     | XES<br>1s2p<br>1s3p<br>(                                        | RIXS<br>2p3d<br>3p3d<br>1s2p<br>1s3p                             | Spectrum XA                                                                                   | s                                      | *<br>•                                    |
| The second                                                                                       |                                                                    |                                                                                      |                                                                 |                                                                  | Lorentzian                                                                                    | Contract 1                             |                                           |
| Slater integral                                                                                  | 1.0 1.0                                                            | 1.0 SO coup                                                                          | ling 10                                                         | 10                                                               | Lorentzian<br>broadening                                                                      | 0.2                                    | 0.4                                       |
| Slater integral<br>reduction (%)                                                                 | 1.0 1.0<br>Fdd Fpd                                                 | 1.0 SO coup<br>Gpd reduction                                                         | ling<br>(%) 1.0<br>Core                                         | 1.0<br>Valence                                                   | Lorentzian<br>broadening                                                                      | 0.2                                    | 0.4                                       |
| Slater integral<br>reduction (%)<br>Crystal field p                                              | 1.0 1.0<br>Fdd Fpd<br>arameters (eV)                               | 1.0 SO coup<br>Gpd reduction                                                         | ling<br>(%) 1.0<br>Core<br>er paramete                          | 1.0<br>Valence<br>rs (eV)—                                       | Lorentzian<br>broadening<br>Gaussian<br>ī broadening                                          | 0.2                                    | 0.4<br>t 800                              |
| Slater integral<br>reduction (%)<br>Crystal field p<br>Symmetry                                  | 1.0 1.0<br>Fdd Fpd<br>arameters (eV)<br>1 ▼                        | 1.0 SO coup<br>Gpd reduction<br>Charge transf                                        | ling<br>(%) 1.0<br>Core<br>er paramete<br>2.0                   | T(eg)                                                            | Lorentzian<br>broadening<br>Gaussian<br>broadening                                            | 0.2<br>Split<br>0.2<br>e, K            | 0.4                                       |
| Slater integral<br>reduction (%)<br>Crystal field p<br>Symmetry O<br>Initia                      | 1.0 1.0<br>Fdd Fpd<br>arameters (eV)<br>state Final state          | 1.0 SO coup<br>reduction i<br>Gpd Charge transf                                      | ling<br>(%) 1.0<br>Core<br>ier paramete<br>2.0<br>2.0           | T(eg)                                                            | Lorentzian<br>broadening<br>Gaussian<br>broadening<br>Temperatur<br>Energy rang               | 0.2<br>Split<br>0.2<br>e, K<br>ge (eV) | 0.4<br>t 800<br>0<br>0 - 1000             |
| Slater integral<br>reduction (%)<br>Crystal field p<br>Symmetry O<br>Initia<br>10 Dq 0.          | 1.0 1.0<br>Fdd Fpd<br>arameters (eV)<br>state Final state          | 1.0 SO coup<br>reduction i<br>Gpd Charge transf                                      | ling<br>(%) 1.0<br>Core<br>ier paramete<br>2.0<br>2.0<br>1.0    | 1.0<br>Valence<br>rrs (eV)-<br>T(eg)<br>T(eg)<br>T(t2g)          | Lorentzian<br>broadening<br>Gaussian<br>broadening<br>Temperatur<br>Energy rang               | 0.2<br>Split<br>0.2<br>e, K<br>ge (eV) | 0.4<br>t 800<br>0 - 1000                  |
| Slater integral<br>reduction (%)<br>Crystal field p<br>Symmetry OI<br>Initia<br>10 Dq O.<br>Dt O | 1.0 1.0<br>Fdd Fpd<br>arameters (eV)<br>state Final state<br>0 0.0 | 1.0 SO coup<br>Gpd Charge transf<br>Charge transf<br>CT<br>Delta 0<br>Udd 0<br>Upd 0 | ling 1.0<br>(%) 1.0<br>Core<br>er paramete<br>2.0<br>2.0<br>1.0 | 1.0<br>Valence<br>rs (eV)-<br>T(eg)<br>T(eg)<br>T(t2g)<br>T(t2g) | Lorentzian<br>broadening<br>Gaussian<br>broadening<br>Temperatur<br>Energy rang<br>Suppress s | 0.2<br>Split<br>0.2<br>e, K<br>ge (eV) | 0.4<br>1 800<br>0 - 1000<br>Stack<br>Plot |

## **2p XAS of transition metal ions**

- ➢ Ground state is 3d<sup>N</sup>: determine symmetry
- Hunds rule: High-spin ground states
- max S, max L, max J
- Effect of crystal field splitting
- High spin or low spin
- Effect of 3d spin-orbit coupling
- Charge transfer effects

## 2p XAS of VF<sub>3</sub>



## High-spin or low-spin



10Dq > 3J(d<sup>4</sup> and d<sup>5</sup>)

10Dq > 2J(d<sup>6</sup> and d<sup>7</sup>)

## High-spin or low-spin

#### High-spin: 10Dq = 1.2Low-spin: 10Dq = 3.0



## High-spin or low-spin





#### **3d spin-orbit coupling**



**3d spin-orbit coupling** 



#### Charge transfer effects

#### 

Ground state of a transition metal system 3d<sup>N</sup> at every site

**Charge fluctations** 

#### Charge transfer effects



## **Charge transfer effects**

- Transition metal oxide: Ground state: 3d<sup>5</sup> + 3d<sup>6</sup>L
- Energy of  $3d^6L$ : Charge transfer energy  $\Delta$



## **Charge Transfer effects**

- High valent oxides (Cu<sup>3+</sup>)
- Systems with π-bonds

### Charge Transfer effects in XAS



J. Elec. Spec.67, 529 (1994)

#### Charge Transfer effects in XAS



## LMCT and MLCT: $\pi$ - bonding

Fe<sup>III</sup>: Ground state: 3d<sup>5</sup> + 3d<sup>6</sup>



with Ed Solomon (Stanford) JACS 125, 12894 (2003), JACS 128, 10442 (2006), JACS 129, 113 (2007)

#### **LMCT** and MLCT: $\pi$ - bonding

Fe<sup>III</sup>: Ground state:  $3d^5 + 3d^6L + 3d^4L$ 



with Ed Solomon (Stanford) JACS 125, 12894 (2003), JACS 128, 10442 (2006), JACS 129, 113 (2007)

#### LMCT and MLCT: $\pi$ - bonding



### **Time resolved XAS**



Huse et al. JACS 132, 6809 (2010); JPCL 2, 880 (2011)
### **XAS: multiplet effects**



# Why X-ray absorption?

- Element specific
- Low concentrations (0.01-0.1 wt%)
- local electronic & magnetic structure
- valence, spin-state, symmetry
- hybridization, MO energies / density of states
- crystal field, charge transfer, spin-orbit, moments

- **Time:** excited states in fs/ps/ns range
- Pressure: <u>1 bar/500 °C flowing gas</u>
- Space: 0.5 nm (STEM), <u>20 nm (STXM)</u>

### Quiz: Calculate the 2p XAS spectrum of Fe atom



# Quiz: Calculate the 2p XAS of NiF<sub>2</sub> and NiCl<sub>2</sub>



#### Magnetic circular dichroism



# Quiz: Calculate the X-MCD of ferromagnetic Ni<sup>2+</sup>



 $[Ni^{II}Cr^{III}(CN)_6]^{1-}$ 

Arrio et al. JPC 100, 4679 (1996)

#### **Charge transfer effects**

- Transition metal oxide: Ground state: 3d<sup>5</sup> + 3d<sup>6</sup>L
- Energy of  $3d^6L$ : Charge transfer energy  $\Delta$



# Quiz: Calculate the 2p XPS of NiF<sub>2</sub> and NiCl<sub>2</sub>



### **XAS experiments**



# XAS experiments: using the core hole decay



### **XAS experiments**



#### Quiz: How to measure XAS of a solid

## **XAS** experiments



