Time Resolved photoemission of correlated electronic systems

L. Perfetti

Laboratoire des Solides Irradiés, Ecole Polytechnique

Outline

Photoelectron Spectroscopy

Basic concepts of solid state physics

Introdution to strongly interacting materials

Structural distortion and Mott transition in 1T-TaS₂

Time resolved photoemission with lasers

New sources and first results

Phonon pumping

Photoelectron Spectroscopy

Sample in UHV environment

Strong inelastic collisions of photoelectrons in the solid

Sudden approximation

M. P. Seah, Surf. Interface Anal. 1979

Core level spectroscopy

Angle Resolved Photoelectron spectroscopy Cu 111

Electrons in a periodic potential

Nuclei + core electrons make the ionic lattice

Valence electrons are delocalized and behave as nearly independent particles

Mean field theory: effective interaction of nearly independent particles

$$\left[-\frac{1}{2}\nabla^{2} + v_{ext}(\mathbf{r}) + \int \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' + v_{xc}(\mathbf{r})\right] \phi_{i}(\mathbf{r}) = \varepsilon_{i} \phi_{i}(\mathbf{r}) \qquad \rho(\mathbf{r}) = \sum_{i}^{N} |\phi_{i}|^{2}$$

The periodicity of the lattice implies the Bloch theorem

Density Functional Theory

Phonons: the low energy excitations of the lattice

$$-2Cu_n + C(u_{n+1} + u_{n-1}) = m \frac{\mathrm{d}^2 u_n}{\mathrm{d}t^2}$$
$$U_k = \frac{1}{\sqrt{N}} \sum_n e^{ikna} u_n$$
$$2C(\cos kd - 1)U_k = m \frac{\mathrm{d}^2 U_k}{\mathrm{d}t^2}$$

$$\Omega_k = \sqrt{2C(1 - \cos kd)}$$

Eigenmodes of coupled harmonic oscillators

Phonon dispersion in Graphene Inelastic X-ray Scattering Structural distortion in SrTiO₃

G. Shirane, Phys Rev , 2005

Softening of zone edge mode

Structural instability

Doubling of the unit cell

The edge mode becomes a center mode

Temperature dependence of the soft phonon

Introdution to strongly interacting materials

hutroor	Frans	sitior	n me	etal C	Dxide	es							8 0 [He]2s ² 2p ⁴ oxygen 16.00					
1													2					
H																		He
lithium	beryllium			Ney:	element name	•							boron	carbon	nitrogen	oxygen	fluorine	4.0020 neon
3				ato		ber							Ď	6	Ń	å	9	10
	Бе			S	ymb	ΟΙ								C	N	U	F	Ne
50.941 sodium	magnesium			atomic wei	gnt (mean rei	ative mass)							aluminium	silicon	phosphorus	sulfur	chlorine	argon
11	12												13	14	15	16	17	18
Na	Mg													Si	P	S	CI	Ar
22.990	24.305												26.982	28.086	30.974	32.065	35.453	39.948
potassium 19	calcium 20		scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	26	27	28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078		44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.38	69.723	72.61	74.922	78.96	79.904	83.80
rubidium 27	strontium 3.8		yttrium 20	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony 54	tellurium 52	iodine 53	xenon
Dh	30 C -		39	7-		42	To	Du			^		45	50 C m	Ch	To	55	04 Vo
RD	Sr		T		QN	MO	IC	ĸu	KU	Pd	Ag	Cd	IN	21	20	Ie		ve
85.468	87.62		88.906	91.224	92.906	95.96	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Ha	TI	Pb	Bi	Po	At	Rn
132,91	137.33		174,97	178,49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]
francium	radium		lawrencium	rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium	darmstadtium	roentgenium	ununbium	ununtrium	ununquadium	ununpentium	ununhexium	ununseptium	ununoctium
87	88	89-102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	**	Lr	Rf	Db	Sg	Bh	HS	Mt	DS	Rg	Uub	Uut	Uuq	Uup	Uuh	Uus	Uuo
[223]	[226]		[262]	[267]	[268]	[271]	[272]	[270]	[276]	[281]	[280]	[285]	[284]	[289]	[288]	[293]	_	[294]

High temperature superconductivity

Strongly interacting materials

Poor screening

Electron-phonon interaction

Structural distortion

Breakdown of the band picture

Structural distortion and Mott transition in 1T-TaS₂

Scanning tunneling microscopy

1*T*-TaS₂

Large structural distortion

Amy Y. Liu, Phys Rev B, 2009

A purely electronic phenomenon: the Mott transition

W bandwidthU Coulomb repulsion

U/W > 1

Mott transition

 T_l decreases, Larger structural distortion Smaller W and larger U/W

300 K **–** 30 K **ARPES Intensity** 0.2 0.0 0.4 -0.2 Binding Energy (eV)

Time resolved photoemission with lasers

Different timescale for electronic motion and lattice motion

R. P. Feynman: The system is said to be in thermal equilibrium if all the *fast* things have happened and the *slow* things not yet.

Dynamics of the electrons in a metal

Thermalization due to electron-electron interaction

Metallic phase $T_1 = 300 \text{ K}$

Very fast electronic thermalization

Electrons reach 1100 K and cool down in 150 fs

Weak oscillations of the spectrum

Large oscillations lasting longer than 10 ps

Rigid spectral shift of 18 meV

Mott phase stable after t > 1 ps

Coherent phonon excitation

Shift of electronic binding energies

$$\frac{\partial^2}{\partial t^2} D_{\mathbf{q}} + \omega_{\mathbf{q}}^2 D_{\mathbf{q}} = -2\omega_{\mathbf{q}} \sum_{\alpha,\mathbf{k}} M_{\mathbf{k}\mathbf{q}}^\alpha n_{\mathbf{k},\mathbf{k}+\mathbf{q}}^\alpha \qquad n_{\mathbf{k},\mathbf{k}'}^\alpha = f_{\mathbf{k}}^\alpha(t) \delta_{\mathbf{k}\mathbf{k}'}$$

Breakdown of the MOTT phase

ARPES Intensity

Instantaneous collapse of the charge gap

Monotonic recovery of electronic correlations in 680 fs

Collapse of the electronic Gap due to the elevated electronic temperature

Dynamical mean field theory

photoinduced

Thermally induced

New sources and first results

Free Electron Lasers

High flux of photons

High photon energies

Low repetition rate

Pulse to pulse fluctuations

Gitter

High Harmonics Generation

1T-TiSe₂

е

E - E_F (eV)

T. Rohwer, Nature 2011

Γ

= 300 K

Se 4p

0

T

M ь

1.0

Min.

Ti 3d

0.5

 K_{\parallel} (Å⁻¹)

1T-TiSe₂

Photoinduced breakdown of the structural distortion

T. Rohwer, Nature 2011

The melting of the ordered state takes place on a timescale that depends on the laser fluence

Delay (fs)

M. Rini, Nature 2007 Pr_{0.7}Ca_{0.3}MnO₃

Phonon pumping

Quiz Section

Is La₂CuO₄ expected to be an insulator or a metal ?

 La_2CuO_4 :

O: [He]2s²2p⁴

La: [Xe]6s²5d¹ Cu: [Ar]4s¹3d¹⁰ $-2^{*}4+3^{*}2 = -2$ Cu²⁺: [Ar]3d⁹

Odd number of electrons Half filled band

Does photoexcited silicon conduce electricity? Is photoexcited silicon a metal?

Photoexcited Silicon is a conductor but not a metal?

Insulator to metal transition

We indicate C_e and C_l the electronic and lattice specific heat of a metal. Which is the typical ratio C_e / C_l at room temperature?

 $E_T - E_0$: ~ kT for lattice ~ (kT)²/W for electrons $C_e / C_l \sim kT/W$

On which timescale one expects a breakdown of the Mott insulating phase?

The typical timescale of the electronic motion is ~h/W

~10 fs in TaS₂

A phonon mode is located at the Brillouin zone boundary of the undistorted phase. Could we coherently excite it in the distorted phase? Under which conditions?

It must be a zone center phonon of the reconstructed BZ.

1*T*-TaS₂

On which timescale one expects a photoinduced transition of the lattice structure?

Period of the soft phonon mode divided by 4 90 fs in TiSe₂

Is the structural transition an effect of the metal-insulator transition ?

It is not possible to reach a metallic phase without changing the structure

A. Cavalleri, Phys. Rev. B 2004

It has been shown that valence band spectra acquired at high photon energy (1 keV) may differ subtantially from the ones acquired in the range of 20-100 eV.

Could you suggest possible reasons of it?

Maiti, Phys. Rev. Lett. 1999

FIG. 2. PES spectra taken with various $h\nu$, the largest of which yields the greatest bulk sensitivity.