Workshop on transient and ultrafast processes in X-ray excited matter September 26-27, 2012 DESY, Hamburg

Modeling low photo-excitation of condensed matter

N. Medvedev

1. Introduction

2. Ultrafast electron kinetics: femtosecond X-ray irradiated SiO2

3. Ultrafast structural transitions: femtosecond X-ray irradiated Diamond

Introduction: timescales

Introduction: timescales

Introduction: timescales

Material excitation

Parameter-free

Needs input: cross-sections/potentials

Needs input: kinetic coefficients

1. Introduction

2. Ultrafast electron kinetics: femtosecond X-ray irradiated SiO2

3. Ultrafast structural transitions: femtosecond X-ray irradiated Diamond

Modeling electron kinetics

MC [N. Medvedev, B. Rethfeld, NJP 12, 073037 (2010)]

Loss-function for *q*=0 => cross-sections for electrons

[R.H. Ritchie and A. Howie, Philos. Mag. 36, 463 (1977)]

Mean free path used in MC compares well with NIST

Page 15

[N. Medvedev, AIP Conf. Proc. 1464, 582 (2012)]

Highly desirable experiments measuring optical properties (complex dielectric function / cross-section), valence and conduction band structure / DOS as functions of photon energy and fluence

Mean free path used in MC compares well with NIST

DESY

Page 16

[N. Medvedev, AIP Conf. Proc. 1464, 582 (2012)]

Highly desirable experiments measuring optical properties (complex dielectric function / cross-section), valence and conduction band structure / DOS as functions of photon energy and fluence

S.M. Vinko et al. Nature 482, 59 (2012)

DOS: S.M. Vinko et al. PRL 104, 225001 (2010)

Loss-function for *q*=0 => cross-sections for electrons

[R.H. Ritchie and A. Howie, Philos. Mag. 36, 463 (1977)]

Mean free path used in MC compares well with NIST

Page 18

[N. Medvedev, AIP Conf. Proc. 1464, 582 (2012)]

Results: electron density

Page 19

N. Medvedev, B. Ziaja, et. al. Contr. to Plasma Phys. (submitted)

Results: transmission

Page 20

N. Medvedev, B. Ziaja, et. al. Contr. to Plasma Phys. (submitted)

Results: comparison of transmission

Figure 3: (a) Monte-Carlo calculation of the free carrier density obtained on SiO_2 glass slab with a 7.1 keV unfocused 30 fs FEL beam. (b) Calculation of the transmission by using the Drude model coupled with MC density (figure (a)) and compared with a singleshot experimental data on glass.

Results: comparison of transmission

Experiments are needed measuring not only electron density, but also

- Temperature
- Distribution function

Snapshots of valence electrons in Si irradiated with optical pulse , probed with FLASH

M. Beye et al., Proc. Natl. Acad. Sci. USA **107**, 39 (2010)

Results: what do we learn?

Electrons are too fast, contribution of valence holes is dominant

Page 25

N. Medvedev, B. Ziaja, et. al. Contr. to Plasma Phys. (submitted)

Results: what do we learn?

Making pulse shorter: 1 fs

Cascades of secondary electrons – a physical limitation on temporal resolution

The higher photon energy is, the longer it takes for cascading!

N. Medvedev, B. Ziaja, et. al. Contr. to Plasma Phys. (submitted)

1. Introduction

2. Ultrafast electron kinetics: femtosecond X-ray irradiated SiO2

3. Ultrafast structural transitions: femtosecond X-ray irradiated Diamond

Page 27

Nonthermal melting of semiconductors

Ultrafast phase transition due to a change of interatomic potential

Nonthermal melting of semiconductors

Experimentally: A. Rousse et al., Nature 410, 65 (2001)

Tight-binding Molecular dynamics (TBMD)

Page 31

[H. Jeschke et al. PRB 1999]

Parrinello-Rahman molecular dynamics

Periodic boundaries

$$\begin{split} L &= \sum_{i=1}^{N} \frac{m_{i}}{2} \dot{\mathbf{s}}_{i}^{\mathrm{T}} h^{\mathrm{T}} h \, \dot{\mathbf{s}}_{i} + K_{\mathrm{cell}} - \Phi(\{r_{ij}\}, t) - U_{\mathrm{cell}} \\ \ddot{\mathbf{s}}_{i} &= -\frac{1}{m_{i}} \sum_{j \neq i} \frac{\partial \Phi(r_{ij})}{\partial r_{ij}} \frac{\mathbf{s}_{i} - \mathbf{s}_{j}}{r_{ij}} - g^{-1} \dot{g} \dot{\mathbf{s}}_{i} \end{split}$$

Changing super-cell size and shape

$$\Phi(\{r_{ij}(t)\}, t) = \sum_{m} f(\epsilon_{m}, t)\epsilon_{m} + \frac{1}{2} \sum_{\substack{ij \\ j \neq i}} E_{rep}(r_{ij})$$

$$f(\epsilon_{m}, t) \text{ - transient electron distribution function}$$

 $\epsilon_m(\{r_{ij}(t)\}) = \langle m | H_{TB}(\{r_{ij}(t)\}) | m \rangle$ - transient band structure

Page 32

[M. Parrinello and A. Rahman, PRL 1980]

Electron distribution function

[N. Medvedev et al., PRL 107 (2011)]

Page 33

Electron distribution function

[N. Medvedev et al., PRL 107 (2011)]

[R.R. Faustlin, B. Ziaja et al., PRL **104** (2010)]

[N. Medvedev, B. Rethfeld, NJP 12 (2010)]

"Bump on hot tail" distribution:

- thermalized low energy part
- high energy non-thermalized tail

[D.Chapman, D. Gericke, PRL **107** (2011)]

Combined MC-TBMD

Processes considered

- 2) Scattering of fast electrons:
 - Deep shell ionizations
 - VB and CB scatterings
- 3) Auger-decays of deep holes
- 4) Thermalization in VB and CB
- 5) Lattice heating, atomic dynamics
- 6) Changes of band structure
- MC - Temperature model (Boltzmann eq.) - TBMD Page 37

Results: Atomic motion

Ultrafast graphitization of diamond

Photon energy 92 eV, FWHM = 10 fs

Below damage threshold

Above damage threshold

Photon energy 92 eV, FWHM = 10 fs

Below damage threshold

Above damage threshold

Photon energy 92 eV, FWHM = 10 fs

Below damage threshold

Above damage threshold

Photon energy 92 eV, FWHM = 10 fs

Below damage threshold

Above damage threshold

For higher fluence: ultrafast phase transition

Photon energy 92 eV, FWHM = 10 fs

Below damage threshold

Above damage threshold

For higher fluence: ultrafast phase transition

Photon energy 92 eV, FWHM = 10 fs

Below damage threshold

Above damage threshold

Results: Temperatures

Photon energy 92 eV, FWHM = 10 fs

Below damage threshold

Above damage threshold

Nonthermal phase transition Damage threshold: 0.7 eV/atom (good agreement with experiments by J. Gaudin *et al.*)

Results: Temperatures

Nonthermal phase transition Damage threshold: 0.7 eV/atom (good agreement with experiments by J. Gaudin *et al.*)

Outlook

Future experiments should help to understand:

- Kinetic coefficients

optical coefficients, cross-sections, band-structure of excited matter

- Transient electron kinetics

electron density, temperature, distribution

- Atomic kinetics

structural changes, timescales

- Simultaneous electrons-atoms kinetics

electron and atom temperatures, electron-phonon coupling, energy exchange rate

Thank you for your attention!

Thanking collaborators:

B. Ziaja, R. Santra (CFEL, DESY) H. Jeschke (Frankfurt University) M. Harmand, S. Toleikis (DESY) J. Gaudin (European XFEL) B. Rethfeld (TU Kaiserslautern) D. Gericke (Warwick University)

* nikita.medvedev@desy.de