Stanford PULSE Institute

UXSS-2023 Condensed Matter Physics (I)

David A. Reis, Stanford PULSE Institute and Departments of Applied Physics and Photon Science dreis@stanford.edu

17th annual Ultrafast X-ray Summer School, CFEL, Hamburg, Germany June 12–16, 2023

Modern Condensed Matter Physics

electron correlation

wikepedia

Controlling properties of Quantum Materials

Outline (scope)

- Lecture 1, the "Basics"
 - Hamiltonian and simplifications based on crystal symmetry
 - Low-lying excitations
 - Non-resonant x-ray scattering and structure
 - Inelastic x-ray scattering
- Lecture 2, "ultrafast and time-resolved applications"
 - Time-domain, non-resonant x-ray scattering
 - Lattice dynamics, near and far from equilibrium
 - Other examples...

- Out of scope (for example):
 - Methods to calculate/predict materials properties.
 - Liquids, glasses, low dimensional materials, device physics,...
 - Thermodynamics, Phase transitions
 - X-ray absorption/emission spectroscopy
 - Resonant inelastic x-ray scattering (RIXS)
 - Non x-ray based characterization
 - Coherence
 - And much more...

Periodic solids: Simplifications based on symmetry + approximations

$\{R|H = H\}$

- Point group (rotations, reflection, inversion, roto-inversion)
- Space group = Point group + discrete translations
- (+ (possibly) time reversal)

- Separate ion and electron degrees of freedom
- Electrons depend to lowest order on average ion position
- lons only see electrons on average.
- Higher order gives couplings

Lattice periodicity and Bloch Theorem

Direct Lattice Vector $\boldsymbol{R}_{uvw} = u\boldsymbol{a}_1 + v\boldsymbol{a}_2 + w\boldsymbol{a}_3$

Equilibrium Positions of ion of type "s"

$$R_{0,uvw}^{(s)} = ua_1 + va_2 + wa_3 + x_s$$
$$H(r) = H(r + R_{uvw})$$
$$\rho(r) = \rho(r + R_{uvw})$$
$$\chi(r) = \chi(r + R_{uvw})$$
etc.

What about excited states?

Lattice periodicity and Bloch Theorem

Direct Lattice Vector $\boldsymbol{R}_{uvw} = u\boldsymbol{a}_1 + v\boldsymbol{a}_2 + w\boldsymbol{a}_3$

Equilibrium Positions of ion of type "s"

$$\boldsymbol{R}_{0,uvw}^{(s)} = u\boldsymbol{a}_1 + v\boldsymbol{a}_2 + w\boldsymbol{a}_3 + \boldsymbol{x}_s$$

$$Hu_{1}(\boldsymbol{r}) = E_1 u_{1}(\boldsymbol{r})$$

$$\psi_k(\mathbf{r}) = L_k \varphi_k(\mathbf{r})$$
$$\psi_k(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}} u_k(\mathbf{r})$$
$$u_k(\mathbf{r}) = u_k(\mathbf{r} + \mathbf{R})$$

a₁

 \mathbf{a}_2

What about excited states?

titute

Reciprocal Lattice

Alphabet soup of elementary excitations (quasi-particles, collective excitations)

$H\psi_k(\boldsymbol{r})=E_k\psi_k(\boldsymbol{r})$

Adapted from A. Warhol

Light scattering and spectroscopy

X-ray interaction with matter primarily through electrons

photon in-electron out

photoelectric absorption (p•A) primarily off core electrons, element specific and sensitive to local environment (photoemission,EXAFS,...)

Leaves material in highly excited state relaxation via fluorescence of Auger emission.

photon in-photon out

elastic, (Thomson, Bragg, ...) initial and final state the same (A^2) finite dispersion due to $(A \cdot p)^2$ term

inelastic,

Compton, IXS (A² & (A•p)²) Raman/RIXS... (A•p)² leaves material in excited state outgoing photon shifted in energy

Fig. 3-1. Total photon cross section in carbon, as a function of energy, showing the contributions of different processes: τ , atomic photo-effect (electron ejection, photon absorption); σ_{coh} , coherent scattering (Rayleigh scattering—atom neither ionized nor excited); , σ_{incoh} incoherent scattering (Compton scattering off an electron); κ_n , pair production, nuclear field; κ_e , pair production, electron field; , σ_{ph} photonuclear absorption (nuclear absorption, usually followed by emission of a neutron or other particle). (From Ref. 3; figure courtesy of J. H. Hubbell.)

X-ray interaction with matter primarily through electrons

photon in-electron out

photoelectric absorption (p•A) primarily off core electrons, element specific and sensitive to local environment (photoemission,EXAFS,...)

Leaves material in highly excited state relaxation via fluorescence of Auger emission.

photon in-photon out

elastic, (Thomson, Bragg, ...) initial and final state the same (A²) finite dispersion due to (A•p)² term

inelastic,

Compton, IXS (A² & (A•p)²) Raman/RIXS… (A•p)² leaves material in excited state outgoing photon shifted in energy

Fig. 3-1. Total photon cross section in carbon, as a function of energy, showing the contributions of different processes: τ , atomic photo-effect (electron ejection, photon absorption); σ_{coh} , coherent scattering (Rayleigh scattering—atom neither ionized nor excited); , σ_{incoh} incoherent scattering (Compton scattering off an electron); κ_n , pair production, nuclear field; κ_e , pair production, electron field; , σ_{ph} photonuclear absorption (nuclear absorption, usually followed by emission of a neutron or other particle). (From Ref. 3; figure courtesy of J. H. Hubbell.)

"Elastic" scattering from single electron
where
$$|k| = |k|_0 = 2\pi/\lambda$$

 $Q = \frac{4\pi}{\lambda} \sin \theta$
 $E_e = E_0 \frac{r_e}{r} e^{i(Q \cdot r - \omega t)} \sin \theta$
 $I_e = I_0 \frac{r_e^2}{r^2} \sin^2 \Theta$
Elastic scattering from single atom, far from resonance
 $\sin \theta = |\epsilon \cdot \epsilon'|$
 $E_e = E_0 \frac{r_e}{r} f(Q) e^{i(Q \cdot r - \omega t)} \sin \theta$
 $f(Q) = \int d^3 r \rho_{atom}(r) e^{iQ \cdot r}$
 $k\vec{Q}$
 $r_e = \frac{e^2}{mc^2} \approx 2.8 \ 10^{-15} m$
 $\frac{d\sigma}{d\Omega} = r_e^2 |\epsilon \cdot \epsilon'|^2$
Thomson
 $d\sigma = r_e^2 |\epsilon \cdot \epsilon'|^2$
Thomson

Quiz, can we have elastic scattering from a free-electron?

No cannot satisfy energy and momentum conservation (Compton Scattering, $\omega' < \omega$)

Then why can we have elastic scattering from an atom?

Recoil insignificant since $M_{ion} >> m_e$

Elastic scattered field Fourier transform of crystal (far from resonance)

X-ray scattering from disordered materials

Recall

$H\psi_k(\boldsymbol{r})=E_k\psi_k(\boldsymbol{r})$

$\{R|H = H\}$

- Point group (rotations, reflection, inversion, roto-inversion)
- Space group = Point group + discrete translations
- (+ (possibly) time reversal)

- Separate ion and electron degrees of freedom
- Electrons depend to lowest order on average ion position
- lons only see electrons on average.
- Higher order gives couplings

Alphabet soup of elementary excitations (quasi-particles, collective excitations)

$H\psi_k(\boldsymbol{r})=E_k\psi_k(\boldsymbol{r})$

Adapted from A. Warhol

Cardon & Yu, Fundamental of Semiconductors

Light scattering and spectroscopy

Dynamical Structure Factor

 $S(\boldsymbol{Q},\boldsymbol{E}) = \frac{N}{2\pi} \int e^{i\boldsymbol{Q}\cdot\boldsymbol{r}} - \frac{\boldsymbol{E}\boldsymbol{t}}{\hbar} G(\boldsymbol{r},t) d^3r dt$

 $\frac{d^2\sigma}{dEd\Omega} = AS(\boldsymbol{Q}, E)$

PHYSICAL REVIEW

VOLUME 95, NUMBER 1

JULY 1, 1954

Correlations in Space and Time and Born Approximation Scattering in Systems of Interacting Particles

> LÉON VAN HOVE Institute for Advanced Study, Princeton, New Jersey (Received March 16, 1954)

Related to poles in susceptibility (excitations)

$$G(\mathbf{r},t) = \frac{1}{N(2\pi)^3} \sum_{R_j R_l} d^3 Q \int e^{-i\mathbf{Q}\cdot\mathbf{r}} < e^{-i\mathbf{Q}\cdot\mathbf{R}_l(0)} e^{-\mathbf{Q}\cdot j(t)} >$$

Time and spatial Fourier transform of density-density correlation

 $S(Q,\omega)$ Related to the imaginary part of density-density response function

UXSS 2023

Phonons: quantized normal vibrational modes of lattice

Phonons: quantized normal vibrational modes of lattice

Propose solutions: $u_j^{(1,2)} = \epsilon^{(1,2)} e^{i(qR_j - \omega t)}$

dispersion relation:

Here u is displacement from equilibrium

Outline (scope)

- Lecture 1, the "Basics"
 - Hamiltonian and simplifications based on crystal symmetry
 - Low-lying excitations
 - Non-resonant x-ray scattering and structure
 - Inelastic x-ray scattering
- Lecture 2, "ultrafast and time-resolved applications"
 - Time-domain, non-resonant x-ray scattering
 - Lattice dynamics, near and far from equilibrium
 - Other examples...

- Out of scope (for example):
 - Methods to calculate/predict materials properties.
 - Liquids, glasses, low dimensional materials, device physics,...
 - Thermodynamics, Phase transitions
 - X-ray absorption/emission spectroscopy
 - Resonant inelastic x-ray scattering (RIXS)
 - Non x-ray based characterization
 - Coherence
 - And much more...

