
$17^{\text {th }}$ annual Ultrafast X-ray Summer School, CFEL, Hamburg, Germany June 12-16, 2023

Modern Condensed Matter Physics

wikepedia
UXSS ifilin 2023
electron correlation

(a) Mott-Hubbard Insulator

RMP 70, 1998

Controlling properties of Quantum Materials

https://commons.wikimedia.org/wiki/File:Cuprates_phasedigagram_en.svg
UXSS ifili2023

Nat. Mat. 16, 2017

PAUL SCHERRERINSTITUT

羔 Stanford

Outline (scope)

- Lecture 1, the "Basics"
- Hamiltonian and simplifications based on crystal symmetry
- Low-lying excitations
- Non-resonant x-ray scattering and structure
- Inelastic x-ray scattering
- Lecture 2, "ultrafast and time-resolved applications"
- Time-domain, non-resonant x-ray scattering
- Lattice dynamics, near and far from equilibrium
- Other examples...
- Out of scope (for example):
- Methods to calculate/predict materials properties.
- Liquids, glasses, low dimensional materials, device physics,...
- Thermodynamics, Phase transitions
- X-ray absorption/emission spectroscopy
- Resonant inelastic x-ray scattering (RIXS)
- Non x-ray based characterization
- Coherence
- And much more...

Periodic solids:
 Simplifications based on symmetry + approximations

$\{R \mid H=H\}$

- Point group (rotations, reflection, inversion, roto-inversion)
- Space group = Point group + discrete translations
(+ (possibly) time reversal)

UXSS $\stackrel{\text { iliin }}{1} 2023$

- Separate ion and electron degrees of freedom
- Electrons depend to lowest order on average ion position
- Ions only see electrons on average.
- Higher order gives couplings

Lattice periodicity and Bloch Theorem

$$
\boldsymbol{R}_{u v w}=u \boldsymbol{a}_{1}+v \boldsymbol{a}_{2}+w \boldsymbol{a}_{3}
$$

Equilibrium Positions of ion of type "s"

$$
\boldsymbol{R}_{0, u v w}^{(s)}=u \boldsymbol{a}_{1}+v \boldsymbol{a}_{2}+w \boldsymbol{a}_{3}+\boldsymbol{x}_{s}
$$

$$
H(\boldsymbol{r})=H\left(\boldsymbol{r}+\boldsymbol{R}_{u v w}\right)
$$

$$
\rho(\boldsymbol{r})=\rho\left(\boldsymbol{r}+\boldsymbol{R}_{u v w}\right)
$$

$$
\chi(\boldsymbol{r})=\chi\left(\boldsymbol{r}+\boldsymbol{R}_{u v w}\right)
$$ etc.

UXSS ifilin 2023
What about excited states?

Lattice periodicity and Bloch Theorem

$$
\boldsymbol{R}_{u v w}=u \boldsymbol{a}_{1}+v \boldsymbol{a}_{2}+w \boldsymbol{a}_{3}
$$

Equilibrium Positions of ion of type "s"

$$
\boldsymbol{R}_{0, u v w}^{(s)}=u \boldsymbol{a}_{1}+v \boldsymbol{a}_{2}+w \boldsymbol{a}_{3}+\boldsymbol{x}_{s}
$$

$$
\begin{aligned}
& H \psi_{k}(\boldsymbol{r})=E_{k} \psi_{k}(\boldsymbol{r}) \\
& \psi_{k}(\boldsymbol{r})=e^{i \boldsymbol{k} \cdot \boldsymbol{r}} u_{\boldsymbol{k}}(\boldsymbol{r}) \\
& u_{k}(\boldsymbol{r})=u_{k}(\boldsymbol{r}+\boldsymbol{R})
\end{aligned}
$$

UXSS ifilin 2023
What about excited states?

Reciprocal Lattice

Direct Lattice Vector
$\boldsymbol{R}_{u v w}=u \boldsymbol{a}_{1}+v \boldsymbol{a}_{2}+w \boldsymbol{a}_{3}$
Define some
$\boldsymbol{G}_{h k l}=h \boldsymbol{b}_{1}+k \boldsymbol{b}_{2}+l \boldsymbol{b}_{3}$
$\boldsymbol{b}_{i}=2 \pi \frac{\boldsymbol{a}_{j} \times \boldsymbol{a}_{k}}{\boldsymbol{a}_{i} \cdot \boldsymbol{a}_{j} \times \boldsymbol{a}_{k}} \epsilon_{i j k}$
$\boldsymbol{a}_{\boldsymbol{i}} \cdot \boldsymbol{b}_{j}=2 \pi \delta_{i j}$
$E_{k}=E_{k+G}$
$e^{i \boldsymbol{k} \cdot \boldsymbol{R}}=e^{i(\boldsymbol{k}+\boldsymbol{G}) \cdot \boldsymbol{R}}$
UXSS ifili2023

Alphabet soup of elementary excitations (quasi-particles, collective excitations)

$$
H \psi_{k}(\boldsymbol{r})=E_{k} \psi_{k}(\boldsymbol{r})
$$

Adapted from A. Warhol

Light scattering and spectroscopy

UXSS $\frac{\text { itiin }}{\text { 2023 }}$ Adapted from A. Warhol
CFEL "-atelio
羔Stanford

X-ray interaction with matter primarily through electrons

photon in-electron out

photoelectric absorption ($\mathrm{p} \cdot \mathrm{A}$)
primarily off core electrons, element specific and sensitive to local environment
(photoemission,EXAFS,...)
Leaves material in highly excited state
relaxation via fluorescence of Auger emission.

photon in-photon out

elastic, (Thomson, Bragg, ...)
initial and final state the same (A^{2})
finite dispersion due to $(A \cdot p)^{2}$ term
inelastic,
Compton, IXS ($\left.\mathrm{A}^{2} \&(\mathrm{~A} \cdot \mathrm{p})^{2}\right)$
Raman/RIXS... (A•p) ${ }^{2}$
leaves material in excited state
outgoing photon shifted in energy

Fig. 3-1. Total photon cross section in carbon, as a function of energy, showing the contributions of different processes: τ, atomic photo-effect (electron ejection, photon absorption); $\sigma_{\text {coh }}$, coherent scattering (Rayleigh scatteringatom neither ionized nor excited); , $\sigma_{\text {incoh incoherent }}$ scattering (Compton scattering off an electron); κ_{n}, pair production, nuclear field; κ_{e}, pair production, electron field; $\sigma_{p h}$ photonuclear absorption (nuclear absorption, usually followed by emission of a neutron or other particle). (From Ref. 3; figure courtesy of J. H. Hubbell.)

X-ray interaction with matter primarily through electrons

photon in-electron out

photoelectric absorption ($\mathrm{p} \cdot \mathrm{A}$)
primarily off core electrons, element specific and sensitive to local environment
(photoemission,EXAFS,...)
Leaves material in highly excited state
relaxation via fluorescence of Auger emission.

photon in-photon out

elastic, (Thomson, Bragg, ...)
initial and final state the same (A^{2})
finite dispersion due to $(A \cdot p)^{2}$ term
inelastic,
Compton, IXS ($\left.A^{2} \&(A \cdot p)^{2}\right)$
Raman/RIXS... (A•p) ${ }^{2}$
leaves material in excited state
outgoing photon shifted in energy

Fig. 3-1. Total photon cross section in carbon, as a function of energy, showing the contributions of different processes: τ, atomic photo-effect (electron ejection, photon absorption); $\sigma_{\text {coh }}$, coherent scattering (Rayleigh scatteringatom neither ionized nor excited); , $\sigma_{\text {incoh }}$ incoherent scattering (Compton scattering off an electron); κ_{n}, pair production, nuclear field; κ_{e}, pair production, electron field; $\sigma_{\text {ph }}$ photonuclear absorption (nuclear absorption, usually followed by emission of a neutron or other particle). (From Ref. 3; figure courtesy of J. H. Hubbell.)
"Elastic" scattering from single electron
where $|k|=|k|_{0}=2 \pi / \lambda$

$$
\begin{aligned}
& Q=\frac{4 \pi}{\lambda} \sin \theta \\
& E_{e}=E_{0} \frac{r_{e}}{r} e^{i(\boldsymbol{Q} \cdot \boldsymbol{r}-\omega t)} \sin \Theta
\end{aligned}
$$

$$
I_{e}=I_{0} \frac{r_{e}^{2}}{r^{2}} \sin ^{2} \Theta
$$

$$
\sin \Theta=\left|\boldsymbol{\epsilon} \cdot \boldsymbol{\epsilon}^{\prime}\right|
$$

Elastic scattering from single atom, far from resonance

$$
\begin{array}{cl}
E_{e}=E_{0} \frac{r_{e}}{r} f(\boldsymbol{Q}) e^{i(\boldsymbol{Q} \cdot \boldsymbol{r}-\omega t)} \sin \Theta & r_{e}=\frac{e^{2}}{m c^{2}} \approx 2.810^{-15} m \\
f(\boldsymbol{Q})=\int d^{3} r \rho_{\text {atom }}(\boldsymbol{r}) e^{i \boldsymbol{Q} \cdot \boldsymbol{r}} & \frac{\mathrm{~d} \sigma}{d \Omega}=r_{e}^{2}\left|\boldsymbol{\epsilon} \cdot \boldsymbol{\epsilon}^{\prime}\right|^{2}
\end{array}
$$

Thomson
$\hbar \vec{Q}$ is the momentum transfer for scattering of a photon
UXSS $\frac{\text { iliin }}{12023}$
$\stackrel{C}{\text { COEL }}$

美 Stanford

Quiz, can we have elastic scattering from a free-electron?

No cannot satisfy energy and momentum conservation (Compton Scattering, $\omega^{\prime}<\omega$)
Then why can we have elastic scattering from an atom?

Recoil insignificant since $M_{i o n} \gg m_{e}$

Coherent-Scattering Incoherent-Scattering

Franklin R. and Gosling R.G. Nature 171, 740741 (1953)
UXSS ${ }^{\text {青ii }} 2023$

Watson J.D. and Crick F.H.C.
Nature 171, 737738 (1953)

Hämäläinen et al., PRB 54, 5453, 1996

Elastic scattered field Fourier transform of crystal (far from resonance)

$$
\begin{aligned}
& E(\boldsymbol{Q}) \approx E_{e} \int d^{3} r \rho(\boldsymbol{r}) e^{i \boldsymbol{Q} \cdot \boldsymbol{r}} \approx E_{a} \int d^{3} r \sum_{s, j} f_{s} \delta\left(\boldsymbol{r}-\boldsymbol{R}_{j}^{S}\right) e^{i \boldsymbol{Q} \cdot \boldsymbol{r}} \\
& E(\boldsymbol{Q}) \approx E_{e} \sum_{j} F(\boldsymbol{Q}) e^{i \boldsymbol{Q} \cdot \boldsymbol{R}_{\boldsymbol{j}}} \quad \mathrm{F}(\boldsymbol{Q})=\sum_{s} f(\boldsymbol{Q}) e^{i \boldsymbol{Q} \cdot \boldsymbol{x}_{\boldsymbol{s}}}
\end{aligned}
$$

$$
\begin{gathered}
E(\boldsymbol{Q}) \approx N E_{e} F(\boldsymbol{Q}) \delta(\boldsymbol{Q}-\boldsymbol{G}) \\
I(\boldsymbol{Q}) \approx N^{2} I_{e}|F(\boldsymbol{Q})|^{2} \delta(\boldsymbol{Q}-\boldsymbol{G})
\end{gathered}
$$

Crystallography

Bragg

$|k|=\left|k_{0}\right|=\frac{2 \pi}{\lambda}, d=\frac{2 \pi}{\left|G_{h k l}\right|}$
UXSS $\frac{\text { illiin }}{1} 2023$

Laue/Ewald

What happens on "Bragg" as $N \rightarrow \infty$?

X-ray scattering from disordered materials

Recall

$$
H \psi_{k}(\boldsymbol{r})=E_{k} \psi_{k}(\boldsymbol{r})
$$

$\{R \mid H=H\}$

- Point group (rotations, reflection, inversion, roto-inversion)
- Space group = Point group + discrete translations
(+ (possibly) time reversal)

- Separate ion and electron degrees of freedom
- Electrons depend to lowest order on average ion position
- Ions only see electrons on average.
- Higher order gives couplings

Alphabet soup of elementary excitations (quasi-particles, collective excitations)

$$
H \psi_{k}(\boldsymbol{r})=E_{k} \psi_{k}(\boldsymbol{r})
$$

Electron Band Structure (Si)

Cardon \& Yu, Fundamental of Semiconductors

Adapted from A. Warhol

Alphabet soup of elementary excitations (quasi-particles, collective excitations)

Electron Band Structure (Si)

3 acoustic
$3 n-3=3(n=2)$ optical
Cardon \& Yu, Fundamental of Semiconductors

$$
H \psi_{k}(\boldsymbol{r})=E_{k} \psi_{k}(\boldsymbol{r})
$$

Phonon Dispersion (Si)

UXSS ifilin 2023

Light scattering and spectroscopy

UXSS $\frac{\text { itiin }}{\text { 2023 }}$ Adapted from A. Warhol
CFEL "-atelio
羔Stanford

Dynamical Structure Factor

$$
\frac{d^{2} \sigma}{d E d \Omega}=A S(\boldsymbol{Q}, E)
$$

$$
S(\boldsymbol{Q}, \boldsymbol{E})=\frac{N}{2 \pi} \int e^{i \boldsymbol{Q} \cdot \boldsymbol{r} \frac{\boldsymbol{E} t}{\hbar}} G(\boldsymbol{r}, t) d^{3} r d t
$$

$$
G(\boldsymbol{r}, t)=\frac{1}{N(2 \pi)^{3}} \sum_{R_{j} R_{l}} d^{3} Q \int e^{-i \boldsymbol{Q} \cdot \boldsymbol{r}}<e^{-i \boldsymbol{Q} \cdot \boldsymbol{R}_{l}(0)} e^{-\boldsymbol{Q} \cdot j(t)}>
$$

Time and spatial Fourier transform of density-density correlation
$S(Q, \omega)$ Related to the imaginary part of density-density response function

Phonons: quantized normal vibrational modes of lattice

Phonons in 1D

$M \quad K$

$$
M \frac{d^{2} u}{d t^{2}}=K\left(u_{j+1}-2 u_{j}+u_{j-1}\right)
$$

Propose solutions: $u_{j}=\epsilon e^{i\left(q R_{j}-\omega t\right)}$
relationship between ω and \mathbf{q}, dispersion relation:

$$
\omega=2 \sqrt{\frac{K}{M}}|\sin (q d / 2)|
$$

ω linear for $|q| \ll 1 / d$: acoustic phonons
UXSS $\frac{\text { illiin }}{12023}$

$\frac{\text { CLE }}{\text { Paul scherrer institut }}$

Phonons: quantized normal vibrational modes of lattice

$$
\begin{aligned}
& \text { Now } \quad M_{1} \neq M_{2} \\
& M_{1} \frac{d^{2} u^{(1)}}{d t^{2}}=K\left(u_{j}^{(2)}-2 u_{j}^{(1)}+u_{j-1}^{(2)}\right) \\
& M_{2} \frac{d^{2} u^{(2)}}{d t^{2}}=K\left(u_{j+1}^{(1)}-2 u_{j}^{(2)}+u_{j}^{(1)}\right)
\end{aligned}
$$

Propose solutions: $u_{j}^{(1,2)}=\epsilon^{(1,2)} e^{i\left(q R_{j}-\omega t\right)}$
dispersion relation:

Here u is displacement from equilibrium
UXSS $\frac{\text { ilin }}{12023}$

Inelastic X-ray Scattering: $\quad S(\vec{Q}, \omega) \propto \sum_{j} \int_{\text {Underdoped } \mathrm{YBCO}} \mathrm{d} t \mathrm{e}^{i \omega t}\left\langle u_{j, \vec{Q}}(0) u_{j,-\vec{Q}}(t)\right\rangle \quad \omega=E / \hbar$

X-ray Diffuse Scattering: $\quad S(\vec{Q}) \propto \sum_{j}\left\langle u_{j, \vec{Q}^{(0)}}(0) u_{j,-\vec{Q}}(0)\right\rangle$

M. Holt et al., PRL 83 (1999).

Outline (scope)

- Lecture 1, the "Basics"
- Hamiltonian and simplifications based on crystal symmetry
- Low-lying excitations
- Non-resonant x-ray scattering and structure
- Inelastic x-ray scattering
- Lecture 2, "ultrafast and time-resolved applications"
- Time-domain, non-resonant x-ray scattering
- Lattice dynamics, near and far from equilibrium
- Other examples...
- Out of scope (for example):
- Methods to calculate/predict materials properties.
- Liquids, glasses, low dimensional materials, device physics,...
- Thermodynamics, Phase transitions
- X-ray absorption/emission spectroscopy
- Resonant inelastic x-ray scattering (RIXS)
- Non x-ray based characterization
- Coherence
- And much more...

