Matter in Extreme Conditions

A. Gleason, SLAC/Stanford University

UXSS 2019, Lecture 6 June 19, 2019

Outline

- Motivation: What is meant by 'extreme' matter and why do we care?
- Tools: What are the type of experiments we can perform?
- Equations of State & Shock Physics
- Temporal revolution: How XFELs are revolutionizing our understanding of matter at extreme conditions.
- Earth / Planetary Science case studies in the ultrafast
- Outlook

Motivations: What is an extreme state of matter?

Earth's surface

High Pressure1 atmHigh Pressure & Temp.1atm, 16 °CHigh Temperature-89.2 - 66.8 °CHigh Magnetic Field45 uT

High Strain rate

.

$$0 - 10^{-14}$$
 / sec

.....Earth's coreEarth's coreSun's core ..Superconducting magnetShock wave

SLAC

High Electric fields High Radiation environments

Motivations: What is an extreme state of matter?

Earth's surface

Motivations: Why should we care about extreme states....application?

Motivations: What is an extreme state of matter? **jLA**C What is meant by 'extreme' matter and why do we care? Novel states of matter under extreme conditions Condensation Bonding Packing Ionization Metallic H₂ Electrides Ice X 2 3 5 6 8 9 log P 10 0 4 7 1 MPa 1 TPa 1 PPa 1 atm 1 Kbar 1 GPa 1 Mbar 1 Gbar $P\Delta V_{\rm NN}$ 1 meV 0.1 eV 1 eV 10 eV 1 keV 6

C-S Yoo. 2017

-SLAC

What are some ways we generate extreme conditions in the laboratory?

- a. Gas-gun or explosively driven+ impact flyer plate
- b. diamond-anvil cell
- c. via laser ablation at 10^12 Watts/cm2
- d. all of the above

-SLAC

What are some ways we generate extreme conditions in the laboratory?

a. Gas-gun or explosively driven + impact flyer plate
b. diamond-anvil cell
c. via laser ablation at 10^12 Watts/cm2
d. all of the above

Tools: how do we generate extreme conditions in the laboratory?

SLAC

C-S Yoo. 2017

Tools: how do we generate extreme conditions in the laboratory?

Static compression: Diamond-anvil cells (DACs)

- Pressure: ambient to 300 GPa
 - (1 GPa = 10,000 bar)
- Temperature:
 - resistive heating up to 1500 K laser heating up to 5000 K
- Sample size: < 0.001 mm³
- Transparent to large range of E-M radiation

Long compression time (minutes-years)

Static compression: Diamond-anvil cells (DACs)

courtesy: Z. Jenei

Dynamic-DACs AG Pump probe Single event 2.5 ms compression FWHM-L2 ps fs ns ms s min us FWHM-L2 0.2 Atomic vibration Thermal melting MHM 0.1 Spin dynamics Phase transition, chemical reaction Nucleation, strain propagation Diffusion, deformation, growth GShen - ESRF dynamic workshop 2013 XFEL 3rd gen x-ray light 0.0 P-L2 D P-L1 source Pressure (GPa) dP/dt-L2 dPid **Dynamic DAC** DESY, PETRA III, P02.2, ECB 0.009 0.010 0.011 0.012 0.013 0.014 0.01 Time (s) Experiments at: P02.2 – Extreme conditions Beamline/Petra-III/DESY H-P. Liermann APS Sector 16 – HPCAT/ANL Using 1kV/7A switching amplifier and piezo actuators we achieved

courtesy: Z. Jenei

peak compression rates of **120 TPa/s** ~ $\dot{\varepsilon}$ ~ 2.75 \cdot 10² s⁻¹

Dynamic compression: laser driven shock waves

What is the simplest equation of state you've likely already heard of/encountered in physics?

a. Galileo's Law

- b. Ideal gas law (PV = nRT)
- c. Law of big strain
- d. none of the above

What is the simplest equation of state you've likely already heard of/encountered in physics?

a. Galileo's Law

b. Ideal gas law (PV = nRT)

- c. Law of big strain
- d. none of the above

 Pressure-Volume Equations of State
 SLAC

 *What is the function that describes reduction in volume for an increase in pressure?
 V(P) = ?

 $\frac{constant \ compressibility}{\Delta V/V_0} = -1/K * \Delta P$ $K = -V_0 * \delta P/\delta V \ (bulk \ modulus)$ $Integrate: \ P = -K*ln(V/V_0) =>$ $V = V_0 exp(-P/K)$

 $\label{eq:K} \begin{array}{l} \underline{linear\ compressiblity}\ (Murnaghan\ EOS),\ pressure-induced\ stiffening} \\ K = K_0 + K' * P \\ K_0 + K' * P = -V_0 * dP/dV => dP/(K_0 + K' P) = -dV/V_0 \\ ln(K_0 + K' * P)^{1/K'} = lnV/V_0 => (K_0 + K' * P)^{1/K'} = V/V_0 \\ V = V0\ (K_0 + K' * P)^{1/K'} \end{array}$

Pressure-Volume Equations of State *What is the function that describes reduction in volume for an increase in pressure? <u>V(P) = ?</u>

polynomial expansion of K =>

 $K = K_0 + K'P + K''P + ...$

this has the problem that K -> 0 at high compression, which is physically non-sensical

<u>semi-emprical</u> (physically reasonable, not from first principles, agrees with data)

carefully choose variables:

Eulerian finite strain measure:

$$f=\frac{1}{2} \left[(V_0/V)^{2/3} - 1 \right]$$

 Pressure-Volume Equations of State

 *What is the function that describes reduction in volume for an increase in pressure?

 V(P) = ?

Birch-Murnaghan EOS:

expand strain energy in Taylor series:

 $F = a + bf + cf^2 + df^3 + \dots$

apply boundary conditions and use derivative relations

P = -dF/dV & K = -V(dP/dV) to solve for coefficients

(just like in 2nd order B-M EOS)

get another term, a lot more algebra & K' not constrained to 4

 $P = 3K_0/2 * [(V_0/V)^{7/3} - (V_0/V)^{5/3}]*[1 + 3/4*(K_0'-4) *((V/V_0)^{-2/3} - 1)]$ = $3K_0f(1+2f)^{5/2}*[1 + 3/4*(K_0'-4) *((V/V_0)^{-2/3} - 1)]$

(this is the 3rd order B-M EOS)

and, in general,

$$P = 3K_0 f(1+2f)^{5/2} [1 + x_1 f + x_2 f^2 + ...]$$

 Pressure-Volume Equations of State
 SLAC

 *What is the function that describes reduction in volume for an increase in pressure?
 V(P) = ?

Rankine-Hugoniot equations

Rankine-Hugoniot equations

$$egin{aligned} &
ho_1\,u_s =
ho_2(u_s - u_2) \ &p_2 - p_1 =
ho_2\,u_2\,(u_s - u_2) =
ho_1\,u_s\,u_2 \ &p_2\,u_2 =
ho_1\,u_s\,\left(rac{1}{2}\,u_2^2 + e_2 - e_1
ight) \end{aligned}$$

Conservation of mass Conservation of momentum Conservation of energy

What is the shock Hugoniot?

- a. Specifically represents the thermodynamic path taken by by a material.
- b. Describes the locus of all possible thermodynamic states a material can exist in behind a shock.
- c. The combination of conservation of mass, momentum and energy across a shock front.
- d. Both b and c

What is the shock Hugoniot?

- a. Specifically represents the thermodynamic path taken by by a material.
- b. Describes the locus of all possible thermodynamic states a material can exist in behind a shock.
- c. The combination of conservation of mass, momentum and energy across a shock front.

Temporal Revolution: seeing processes unfold in time

家族族族族

Horse named Sallie Gardner was photographed in time while galloping.

E. Muybridge (1872): Cameras+ tripwires showed that all four hooves do leave the ground at once!

Temporal Revolution: seeing processes unfold in time

Horse named Sallie Gardner was photographed in time while galloping.

Until the advent of time-resolved X-ray probes combined with dynamic compression platforms we were missing some information about transformation pathway and mechanism.

Frontier Science in condensed matter and plasma physics

To understand the fundamental physics that govern atomic interactions in condensed matter, measurements are required at relevant temporal- and spatial-scales.

→ shock-loading + ultrafast X-ray techniques

Linac Coherent Light Source at SLAC X-FEL based on last 1-km of existing 3-km linac 1.5-15 Å (14-4.3 GeV) Existing 1/3 Linac (1 km)

(with modifications)

Far Experiment

Hall

Transport

Line (200 m)

Undulator (130 m) Near Experiment Hal

5

NATIONAL ACCELERATOR LABORATORY

Linac Coherent Light Source at SLAC

First hard x-ray free electron laser (FEL)

Short bunch duration

(2~10 fs, 50 - 200 fs)

Full transverse coherence

High repetition rate (~120 Hz)

Tunable from 600 to 9500 eV

- 4-9.5 keV for 1st harmonic at MEC
 High # of photons per bunch > 10¹²
 - 3mJ/pulse

https://portal.slac.stanford.edu/sites/lcls_public

-SLAC

Which is *not* a characteristic of XFEL radiation compared to synchrotron radiation?

- a. Short pulse duration
- b. coherent
- c. Large number of photons per pulse (e.g., 10¹²)

d. continuous

-SLAC

Which is **not** a characteristic of XFEL radiation compared to synchrotron radiation?

- a. Short pulse duration
- b. coherent
- c. Large number of photons per pulse (e.g., 10¹²)

d. continuous

MEC instrument optics and diagnostics

The Matter in Extreme Conditions (MEC) instrument combines the unique LCLS beam with high power optical laser beams, and a suite of dedicated diagnostics tailored for the study of Warm Dense Matter, High Pressure Physics, Shock Physics, and High Energy Density Physics.

Velocimetry to deduce time-resolved materials properties

Time (ns)

Duffy & Smith, 2019

Laser driven shock compression

-SLAC
Laser driven shock compression

Typical pump-probe experimental setup

or compressed matter

LCLS as a pump:

Uniformly and rapidly heat target volumes reaching 100s eV temperature (HDM)

LCLS as a probe:

- Tunability provides spectroscopic capability for the study of HED
- High peak brightness provides Thomson scattering capability and Phase contrast imaging capability
- Short pulse duration can measure WDM in transient phenomena

X-ray Diffraction (XRD)

 $n\lambda = 2d_{(hkl)} \sin \theta$ Bragg's Law

Why care about the crystal symmetry?

- Mass density (atom locations)
- Electron wave functions, including bonding
- Wave fields for scatted X-ray

Time-resolved X-ray Diffraction (XRD): transformation kinetics

TRANSFORMATIONS UNDER SHOCK

<u>TYPE</u> I. <u>Mechanical</u> Dynamic Yielding at the HEL

<u>ENERGETICS</u> ~0 (defect formation affects thermal state negligibly)

 $\Delta E_{tr} \sim -P_{tr} \Delta V_{tr}$

 $\Delta E_{tr} \sim T_{tr} \Delta S_{tr}$

II. Structural

- a) <u>Solid State</u> 1)(Shear-based, martensitic, displacive)
 - 2)(diffusion-limited, reconstructive: includes $\Delta E_{tr} \sim -P_{tr} \Delta V_{tr}$ disproportionation reactions

b) Melting

III. Electronic

(e.g., Spin change or bandgap closure/electronic excitation)

$$\Delta E_{tr} \sim -P_{tr} \Delta V_{tr} + \Delta E_{electroni}$$

Electronic transitions occur on ps. time scales, but can be kinetically limited due to strains associated with transition: viscous relaxation may be required for transition to go to take place.

Gleason et al., 2015

Courtesy: Jeanloz

2001 ot all, 201

SLAC

KINETICS

Inertial effect on defect propagation

Rapid kinetics & little impedance at high ε ; slight orientation dependence caused by shearenhancement.

Slow kinetics due to diffusionlimit: highly T-dependent. <u>Most</u> <u>important equilibrium mode of</u> <u>transformation for minerals</u>.

Rapid kinetics but not easily observed.

Highlights from recent experiments

Crust

 Crystallization/amorphization kinetics in SiO₂

Mantle

 Dynamics of spin transitions in Fe-bearing silicates

Core

 Texture and deformation mechanisms of iron

Highlights from recent experiments

Crust

 Crystallization/amorphization kinetics in SiO₂

Mantle

 Dynamics of spin transitions in Fe-bearing silicates

Core

• Texture and deformation mechanisms of iron

Mineralogy of impact craters & shock metamorphism

- Behavior of α-quartz
- Diaplectic glass formation vs. high pressure crystalline polymorphs

Pump-probe diagnostics

SLAC

Probe: -LCLS XFEL with 60 fs pulse, 8 keV -50 µm spot -VISAR

Gleason et al., 2015

Ablator layer on a target is used to smooth out any hot spots in the drive laser and ensure more homogeneous ablation and uniform shock.

Fused silica to stishovite

-SLAC

2θ

Fused silica to stishovite

-SLAC

20

Fused silica to stishovite: on compression

Fused silica to stishovite: on compression

Fused silica to stishovite: on compression

—SI ≜C

Question 6

-SLAC

True or false: Time-resolved X-ray diffraction peak widths are sensitive to both grains size change and strain.

Question 6

-SLAC

True or false: Time-resolved X-ray diffraction peak widths are sensitive to both grains size change and strain.

Fused silica to stishovite: on release

Fused silica to stishovite: on release

Fused silica to stishovite: on release

Stoffler and Langenhorst, 1994

-New constraints on impact crater mineralogy and shock stages

Highlights from recent experiments

Crust

Crystallization/amorphization kinetics in SiO₂

Mantle

 Dynamics of spin transitions in Fe-bearing silicates

Core

• Texture and deformation mechanisms of iron

Spin transitions in Fe-bearing silicates

PI: R. Alonso-Mori, SLAC

Goal: Discovery experiment to determine feasibility of collecting X-ray emission spectra during laser shock compression and measure spin transitions in Fe-bearing silicates with implications for the Earth's

X-ray emission spectroscopy: spin transition in iron

Speziale et al., 2005

-SLAC

X-ray emission spectroscopy: spin transition in iron

Courtesy R. Alonso-Mori

63 Lin, *et al., Science* TBP

Spin transitions in Fe-bearing silicates

Highlights from recent experiments

Crust

Crystallization/amorphization kinetics in SiO₂

Mantle

 Dynamics of spin transitions in Fe-bearing silicates

Core

 Texture and deformation mechanisms of iron

Earth's inner core

Tkalcic, 2015

- 1220 km radius
- Crystallization of Fe-alloy due to Earth's cooling
- Pressure range: 330 365
 GPa
- Temperature: ~ 6000 K

Earth's inner core

- Vocadlo et al. (2003), 0 K 12.6 Steinle-Neumann et al. (2001), 5000 K Laio et al. (2000), 300 K Steinle-Neumann et al. (1999), 0 K Mao et al. (1998), 300 K Layer a 12.2 Soderlind et al. (1996), 0 K Stixrude and Cohen (1995), 0K V_P (km/sec) Layer b 11.8 11.4 Layer a Top view www4.nau.edu/meteorite/Meteorite/Book-GlossaryH.html 11 What mechanisms induce anisotropy in the 10.6 10 20 60 70 80 а С 30 40 50 inner core? Angle to c-axis (°)

W. Mao et al., 2008

Earth's inner core

Goal

 Measure texture evolution and strength as a function of shock compression conditions.

Radial x-ray diffraction

Magnitude of waviness

-- deviatoric strain & shear strength

Magnitude dependence on *hkl* -- elasticity tensor

Intensity vs. azimuthal angle -- lattice preferred orientation

Gleason and Mao, 2013

Targets

Varied:

-starting chemistry and phase 99.5%, 99.99%, steels, natural meteorites -starting microstructure single-crystals, polycrystalline+texture, polycrystalline random orientation, grain size -processing history

annealed, hardened, as-rolled, sputtered

Looking forward: New Era in Materials Genomics

Connecting structure, properties and performance. How do materials transform/deform/fail under extreme conditions?

- Visualization of transformation/deformation mechanism
 - Twinning
 - Texture
 - Mosaicity
- Synergy of datasets \rightarrow New materials properties correlations
 - XRD + spectroscopy + imaging
- Kinetics models
 - Nucleation mode tied to molecular dynamics (MD) simulations/density functional theory (DFT) & synthetic data
Real-time visualization of transformation & deformation mechanisms

Twinning

- Timescale: picoseconds
- Transition from twinning to dislocation-slip plasticity above 150 GPa

Texture

- Dynamic strength
- Polycrystal plasticity models

Mosaicity prediction

- Fracture and rotation of crystallites in a brittle materials
- Elastic-plastic transitions

Synergy of datasets: looking for new materials properties correlations

XRD + x-ray spectroscopy

- meV-resolution inelastic X-ray scattering: transport properties + lattice structure
- X-ray emission spectroscopy: electronic- vs. lattice-structure changes

XRD + coherent diffractive X-ray imaging

Kinetics models leading to more predictive models

 Kinetics models (e.g., Johnson-Mehl-Avrami-Kolmogorov)

volume fraction with an exponential functional form,

$$\alpha(t) = 1 - \exp(-(k(t-\tau))^n, \qquad (1)$$

where $\alpha(t)$ is the fraction of the material transformed as a function of time, t, k is a crystallization rate constant, τ is incubation time, and n is the JMAK kinetic exponent.

- Nucleation mode tied to MD/DFT & Synthetic data
 - Solidification visualize the formation
 - Melting/resolidification
 - Far-from-equilibrium phenomena
 - Materials properties correlations
 - Tuning properties at the mesoscale
 - Role of impurities, defects, dislocation density
 →Works toward predictive capability

Revolution in X-ray sources is enabling a revolution in WDM & HED Science

New gated detector deployed at LCLS in 2019 measures nanosecond Cu heating

SLAC

Ultrafast Electron Diffraction has visualized the heterogenous to homogeneous melting transition

Observation of melting and formation of WDM Sensitive to nucleation sites (blue) Delay = -2.00 ps2.5 50 100 Radial average intensity SC Au Melting time (ps) 1 150 PC Au -Lin 2006 200 -Mazevet 2005 250 300 Homogeneous Melting Regime 350 Heterogeneous Melting Regime 400 Incomplete Melting Regime 450 500 0 100 200 300 400 500 0 6 8 10 10¹ Q(1/Å)Data for 900 J/m² on Au Mo et al., 2018 400 nm, 130 fs pump 10⁰ beam (ϕ =420 μ m) 0.4 0.8 1.2 1.6 0 3.2 MeV, <200 fs, 20 fc electron probe Energy density (MJ/kg) Sample card on 77 motorized stage

SLAC

LCLS-II and LCLS-II-HE will take us from 120 pulses per second to 1 million pulses per second

Electronic dynamics Atomic-scale structure LCLS-II Layout 10 LCLS-II HXU LCLS-II-HE 10²⁸ Average Brightness (ph/s/mm²/mrad²/0.1%BW) Eu-XFEL CLS-DLSR HXU+Cu-linad limit LCLS-II (120 Hz) LCLS LCLS-II-HE (120 Hz) DLSR(s) — 0.2-1.1 km, 2-6 GeV 10 LCLS-II — 6.3 km, 9 GeV 10 2 10 8 12 6 14 16 18 Photon Energy (keV) 10 msec ~mJ LCLS ~fs LCLS-II now 75% complete; users in 2021 EuXFEL (FLASH) LCLS-II-HE received CD-1 in Sept 2018

LCLS-II (HE)

Targeting mid-decade users

SLAC

The X-ray laser revolution is set to drive a new era of Grand Challenge discovery science

ndi

WATER

REVIEWS of

... to full exploitation and exploration of new frontiers

From early scientific impact,

... to unprecedented measurements,

... to accessign critical new regimes,

Attosecond X-ray analysis

otonics

nature

Opportunities for Basic Research at the Frontiers of XFEL Ultrafast Science

Office of

Science

Thank you for your attention!!

Collaborators:

- Cindy Bolme, Richard Sandberg, Don Brown LANL
- Wendy Mao Stanford University; SLAC
- Hae Ja Lee, Bob Nagler, Eric Galtier, Brice Arnold, Eduardo Granados, Zhou Xing, Despina

Milathianaki, Sebastien Boutet, Roberto Alonso-Mori, Dimosthenis Sokaras, Thomas Kroll – SLAC

- Andrew Higginbotham University of York
- Justin Wark University of Oxford
- Andreas Schropp, Frank Seiboth, Christian Schroer DESY
- James Hawreliak Washington State University
- Dan Dolan, Chris Seagle, Tom Ao Sandia National Lab
- Suzanne Ali, Peter Celliers, Amy Lazicki, Richard Kraus,
- Dayne Fratanduono, Jon Eggert, Rip Collins LLNL

- many more

Funding: DOE; NSF

